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Abstract A symmetric relation between time-dependent problems described by the lin-
earized Boltzmann equation is obtained for a gas in a fixed bounded domain. General rep-
resentations of the total mass, momentum, and energy in the domain, as well as their fluxes
through the boundary, in terms of an appropriate Green function are derived from that rela-
tion. Several application examples are presented. Similarities to the fluctuation–dissipation
theorem in the linear response theory and its generalization to gas systems of arbitrary Knud-
sen numbers are also discussed. The present paper is an extension of the previous work of
the author (Takata in J. Stat. Phys. 136: 751–784, 2009) to time-dependent problems.

Keywords Boltzmann equation · Kinetic theory of gases · Symmetry · Reciprocity ·
Fluctuation–dissipation theorem · Linear response theory

1 Introduction

The linearized Boltzmann equation is widely used for the study of a slow rarefied gas flow
or a gas in a micro scale system such as a micro channel, an aerosol particle, etc. One of
the interesting features in such gas systems is cross effects between fluid-dynamical and
thermodynamical phenomena (e.g., the Poiseuille flow vs. the thermal transpiration [1, 2],
the thermophoresis [3, 4] vs. the thermal polarization [5]; see, e.g., [6–8]). In order to in-
vestigate what kind of relation holds in general between such independent problems, we
recently derived in [9] a symmetric relation between two different boundary-value problems
described by the steady linearized Boltzmann equation. In this reference, by considering
a solution of the problem as a static response of the system against the perturbation from
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the surroundings through the boundary, we introduced the Green function for an elemental
source on the boundary. Then, we derived a general expression of mass, momentum, and
heat fluxes through the boundary in terms of the corresponding Green function. The expres-
sion is valid for the entire range of the Knudsen number Kn (0 < Kn < ∞). As a natural
consequence of the Green function approach, the reciprocity of the fluxes on the boundary
caused by the Green functions was obtained. With the aid of this reciprocity, in [10], we
discussed the Onsager–Casimir reciprocity for the systems of arbitrary Kn on the basis of
the entropy production argument. In this reference, as in [11–15], we considered the total
entropy production caused by the gas–gas and gas–surface interactions. Then, we obtained
the Onsager–Casimir reciprocity in a way of point correspondence. We also pointed out that
the real identity of the conventional-type Onsager–Casimir relation is the Green reciprocity.

In [9, 10], we have restricted ourselves to discussion of time-independent problems. In
the present paper, we will extend our theory [9] to time-dependent problems. The existing
theories on the Onsager–Casimir relation are based on the entropy production argument
(e.g., [11–15]), in which the production caused by the gas–surface interaction is determined
indirectly by the entropy balance at the steady state. On the other hand, we have shown
in [9] that the meaningful cross effects can be deduced from the Green function approach,
which is completely free from the entropy production argument [thus, the interfatial volume
(see �V in Fig. 1 of [10]) is not included in the considered domain]. This feature allows
us to develop a general framework for the cross effects between time-dependent problems
described by the linearized Boltzmann equation. In the present paper, we restrict ourselves
to a monatomic single component gas in a fixed bounded domain.

The paper is organized as follows. In Sect. 2, we first formulate the class of time-
dependent problems to be discussed and then derive a symmetric relation between two
problems described by the unsteady linearized Boltzmann equation. Next in Sect. 3, we
introduce a few Green functions for the initial data and present a general expression of the
total mass, momentum, and energy in the system for any time. In Sect. 4, we introduce a few
Green functions for the inhomogeneous term, which represents the effect of a generalized
weak external force, and present an expression corresponding to that derived in Sect. 3. By
comparing two expressions, we show that the Green functions for the inhomogeneous term
are a time integration of the corresponding Green function for the initial data. In Sect. 5, we
introduce the Green functions for boundary data and derive a general expression of the mass,
momentum, and heat fluxes through the boundary. This is an extension of the representation
theorem in [9] to the case of unsteady systems. One may find a similarity of some results
in Sects. 3 and 4 to those of the linear response theory [16, 17] for the systems without
boundary effect (the so-called bulk systems, where Kn is supposed to be small), though our
theory covers the entire range of the Knudsen number. In order to illustrate a point about
the resemblance, in Sect. 6, we apply the symmetric relation to a gas in a periodic box and
derive the expressions similar to the fluctuation–dissipation theorem and to those for the
static admittance in the linear response theory for bulk systems [16]. We also discuss their
extensions to the systems of arbitrary Kn.

2 Symmetry of the Linearized Boltzmann Equation in Unsteady Systems

2.1 Problem

Consider the time-dependent behavior of a single component monatomic rarefied gas that
occupies a fixed bounded domain D (i.e., the shape of D does not change in time). The state
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of the gas is assumed to be close to the equilibrium state at rest with density ρ0 and temper-
ature T0, so that the higher order effects of the deviation from this state will be neglected.

With a proper choice of the reference time t0 and length L, we denote by t0 t ,
Lx, (2kT0/m)1/2ζ , ρ0(2kT0/m)−3/2[1 + φ(t,x, ζ )]E(ζ ), the time, the space coordinates,
the molecular velocity, and the velocity distribution function of gas molecules, respec-
tively. Here, k is the Boltzmann constant, m is the mass of a molecule, and E(ζ ) =
π−3/2 exp(−|ζ |2). The domain of the dimensionless x-space corresponding to D will be
denoted by D. Then, the behavior of the gas is described by the following linearized Boltz-
mann equation:

Sh
∂φ

∂t
+ ζi

∂φ

∂xi

= 2√
π

1

Kn
L(φ) + I (ζ ∈ R

3, x ∈ D, t > 0). (1)

Here Sh[= L/t0(2kT0/m)1/2] is the Strouhal number, Kn(= �0/L) is the Knudsen number
(�0 is the mean free path of a molecule in the reference equilibrium state at rest), L is the
linearized collision operator and is required to have the properties summarized in Sect. A.1.
For the sake of the latter discussions, the inhomogeneous term I (t,x, ζ ) is added to the
right-hand side of (1).1

The initial data is denoted by putting the subscripted “initial”:

φ(0,x, ζ ) = φinitial(x, ζ ) (ζ ∈ R
3, x ∈ D). (2)

The boundary ∂D of the domain D is composed of two parts in general. One is a simple
boundary (or a solid surface) or an interface with the condensed phase of the gas, which we
generically call the real boundary and denote by ∂Dw. The other is an artificial boundary
or a control surface set inside a gas region wider than D, which we generically call the
imaginary boundary and denote by ∂Dg. The specular reflection and periodic boundaries
are typical examples of the imaginary boundary.

First consider the real boundary ∂Dw . Let us denote the temperature of the boundary by
T0(1 + τw), the corresponding saturation pressure of the gas by p0(1 +Pw), and the velocity
of the boundary by (2kT0/m)1/2uw, where p0 = (ρ0/m)kT0 is the pressure at the reference
equilibrium state at rest. Pw, τw, and uw are, in general, a function of t and x. Since the
shape of D does not change in time, uw · n = 0. φ obeys the following condition on ∂Dw:

φ = gw +
∫

ζ∗
n <0

|ζ ∗
n |E(ζ ∗)

|ζn|E(ζ )
R(ζ ∗, ζ ;x)(φ∗ − g∗

w)dζ ∗ for ζn > 0,x ∈ ∂Dw, t > 0, (3)

where

gw = Pw(t,x) + 2ζiuwi (t,x) +
(

|ζ |2 − 5

2

)
τw(t,x) for ζ ∈ R

3,x ∈ ∂Dw, t > 0, (4)

ζn = ζ · n, and ζ ∗
n = ζ ∗ · n. The (2kT0/m)3/2R is the reflection kernel of the boundary that

is at rest with the reference temperature T0. In what follows, if necessary, we shall denote
R of a simple boundary by RCR and that of an interface with the condensed phase by RPR.

1A typical example of I is the effect of weak external forces of O(φ), though I is not necessarily related
to external forces. For instance, in the problem of the Poiseuille flow, the imposed pressure gradient can
be treated as the inhomogeneous term (see Examples 2 and 3). In the present paper, we do not consider an
external force of O(1) for simplicity.
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Descriptions with the notation R apply to both RCR and RPR. The RCR and RPR satisfy the
properties summarized in Sect. A.2. Due to the fourth property of RCR, Pw in gw is a fake
parameter on a simple boundary, and one may put Pw = 0 without loss of generality for
RCR. It should be noted that 〈ζnφ〉 = 0 holds on a simple boundary (see the second property
of RCR). This equality does not hold in general for RPR.

Next consider the imaginary boundary ∂Dg. We assume that the imaginary boundary is,
in general, composed of two parts, say ∂D(1)

g and ∂D(2)
g (i.e., ∂Dg = ∂D(1)

g ∪ ∂D(2)
g ):

(i) On ∂D(1)
g , φ obeys the following condition:

φ(t,x, ζ ) = hin(t,x, ζ ) for ζn > 0,x ∈ ∂D(1)
g , t > 0. (5a)

Here hin is a given function for ζn > 0. For the sake of later discussions, we denote this
function extended to the whole range of ζ by h(t,x, ζ ). The way of extension may be
arbitrary and does not influence the results that follow in the present paper.

(ii) On ∂D(2)
g , φ obeys the following condition:

φ = h(t,x, ζ ) +
∫

∂D
(2)
g

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )(φ′ − h′)dζ ′ dS′

for ζn > 0,x ∈ ∂D(2)
g , t > 0, (5b)

where h(t,x, ζ ) is a given function for ζ ∈ R
3, x ∈ ∂D(2)

g , and t > 0; ζ ′
n′ = ζ ′ · n′; n′ is

the inward unit vector normal to ∂D(2)
g at position x ′; dS′ is the surface element of ∂D(2)

g
at position x ′; and φ′ = φ(t,x ′, ζ ′) and h′ = h(t,x ′, ζ ′). The kernel P is independent
of t and its properties are summarized in Sect. A.3. It should be noted that the specular
and periodic boundaries are a typical example of ∂D(2)

g .

Let us denote the mass density, flow velocity, and temperature of the gas by ρ0(1 + ω),
(2kT0/m)1/2ui , and T0(1 + τ). Let us denote the stress tensor, heat-flow vector, and specific
energy of the gas by p0(δij + Pij ), p0(2kT0/m)1/2Qi , and 3

2 (p0/ρ0)(1 + E ). Then, they are
given by the moment of φ as follows:

ω[φ] = 〈φ〉, ui[φ] = 〈ζiφ〉, τ [φ] = 2

3

〈(
|ζ |2 − 3

2

)
φ

〉
, (6a)

E [φ] = 2

3
〈|ζ |2φ〉, Qi[φ] =

〈
ζi

(
|ζ |2 − 5

2

)
φ

〉
, Pij [φ] = 〈2ζiζjφ〉. (6b)

Here, the brackets 〈 〉 represents the following moment:

〈f 〉(t,x) :=
∫

f (t,x, ζ )E(ζ )dζ .

In later discussions, we need to deal with the moments of different velocity distribution
functions, say φA, φB . For the sake of later convenience, we have introduced the notation
convention in (6) that the concerned velocity distribution function is indicated inside the
solid parenthesis [ ] (e.g., ω[φA], ω[φB ], etc.). If [·] is omitted, the quantity is defined as
the corresponding moment of φ (e.g., ω = ω[φ]). In what follows, we denote a quantity
integrated in time from t = 0 by putting a line − over the quantity. For instance,

ω[φ](t,x) =
∫ t

0
ω[φ](r,x)dr.
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2.2 Preparations—basic lemmas

We introduce the following notation:

fτ (t,x, ζ ) := f (τ + t,x, ζ ) (τ > 0, t ≥ −τ),

f �
τ (t,x, ζ ) := f (τ − t,x, ζ ) (τ > 0, t ≤ τ),

f −(t,x, ζ ) := f (t,x,−ζ ),

and frequently use the following obvious properties in the sequel:

(
−)− = 
, 〈
〉 = 〈
−〉 for any 
. (7)

Below we show Lemmas 1–3, which will be the base in deriving the symmetric relation
for unsteady systems.

Lemma 1 Let φA be a solution of (1) with I = IA. Let φB be a solution of (1) with
I = IB . Here, Sh, Kn, and L in (1) are common to φA and φB . If L satisfies the proper-
ties summarized in Sect. A.1, the following equality holds:

Sh
∂

∂t
〈φA

τ φB�−
s 〉 + ∂

∂xi

〈ζiφ
A
τ φB�−

s 〉 = 〈IA
τ φB�−

s 〉 − 〈IB�−
s φA

τ 〉. (8)

Proof Because of the definition of φA, φA
τ satisfies

Sh
∂φA

τ

∂t
+ ζi

∂φA
τ

∂xi

= 2√
π

1

Kn
L(φA

τ ) + IA
τ .

The integration over the whole space of ζ after the multiplication of φB�−
s E yields

〈
φB�−

s Sh
∂φA

τ

∂t

〉
+

〈
φB�−

s ζi

∂φA
τ

∂xi

〉
=

〈
φB�−

s

2√
π

1

Kn
L(φA

τ )

〉
+ 〈φB�−

s IA
τ 〉. (9)

On the other hand, because of the definition of φB , φB�
s satisfies

−Sh
∂φB�

s

∂t
+ ζi

∂φB�
s

∂xi

= 2√
π

1

Kn
L(φB�

s ) + IB�
s .

Thus the first term on the right-hand side of (9) is transformed as follows:

〈
φB�−

s

2√
π

1

Kn
L(φA

τ )

〉
=

〈
φA−

τ

2√
π

1

Kn
L(φB�

s )

〉

= −
〈
φA−

τ Sh
∂φB�

s

∂t

〉
+

〈
φA−

τ ζi

∂φB�
s

∂xi

〉
− 〈φA−

τ IB�
s 〉

= −
〈
φA

τ Sh
∂φB�−

s

∂t

〉
−

〈
φA

τ ζi

∂φB�−
s

∂xi

〉
− 〈φA

τ IB�−
s 〉,

where in the first equality the self-adjointness of L and (7) have been used. Substitution into
(9) eventually leads to (8). �
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Lemma 2 Let φA satisfy (3) with gw = gA
w . Let φB satisfy (3) with gw = gB

w . Here R in (3)
is common to φA and φB and satisfies the properties summarized in Sect. A.2. Then, the
following equality holds:

〈ζn(φ
A − gA

w)τ (φB − gB
w )�−

s 〉 = 0 on ∂Dw. (10)

Proof Consider the integral
∫

ζn>0 ζn(φ
A − gA

w)τ (φB − gB
w )�−

s E dζ . By the use of (3) for φA,
this integral is expressed as

∫
ζn>0

ζn(φ
A − gA

w)τ (φB − gB
w )�−

s E dζ

=
∫

ζn>0

∫
ζ∗
n <0

|ζ ∗
n |E∗R(ζ ∗, ζ ;x)(φA∗ − gA∗

w )τ (φB − gB
w )�−

s dζ ∗ dζ .

Because of the detailed balance in Sect. A.2, the right-hand side is rewritten as

=
∫

ζn>0

∫
ζ∗
n <0

|ζn|ER(−ζ ,−ζ ∗;x)(φA∗ − gA∗
w )τ (φB − gB

w )�−
s dζ ∗ dζ .

This form can be further transformed by changing the variable of integration and substituting
(3) for φB :

=
∫

ζn<0

∫
ζ∗
n >0

|ζn|ER(ζ , ζ ∗;x)(φA∗ − gA∗
w )−

τ (φB − gB
w )�

s dζ ∗ dζ

=
∫

ζ∗
n >0

|ζ ∗
n |E∗(φA∗ − gA∗

w )−
τ (φB∗ − gB∗

w )�
s dζ ∗

=
∫

ζn<0
|ζn|E(φA − gA

w)τ (φB − gB
w )�−

s dζ .

Transposing the most right-hand side to the most left-hand side yields (10). �

Remark 1 Even when R is common to φA and φB only on a part of ∂Dw, the equality (10)
holds at every point on the common part.

Lemma 3 Let φA satisfy (5) with h = hA. Let φB satisfy (5) with h = hB . Here P in (5b)
is common to φA and φB and satisfies the properties summarized in Sect. A.3. Then, the
following equality holds:

∫
∂Dg

〈ζn(φ
A − hA)τ (φB − hB)�−

s 〉dS = 0. (11)

Here, on ∂D(1)
g , hA and hB are respectively the extensions of hA

in and hB
in into the whole space

of ζ [see (5a)].

Proof The proof is similar to that of Lemma 2 and is omitted here. �
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2.3 Symmetric Relation in Unsteady Systems

Lemmas 1–3 in Sect. 2.2 are the extensions of the corresponding lemmas for the steady
systems in [9]. As in the case of the steady systems, we now derive the symmetric relation
for the unsteady systems from Lemmas 1–3.

Proposition 1 (Symmetric relation for unsteady systems) Let φA be a solution of the initial-
and boundary-value problem (1)–(5) with I = IA, gw = gA

w , h = hA, and φinitial = φA
initial. Let

φB be a solution of the initial- and boundary-value problem (1)–(5) with I = IB , gw =
gB

w , h = hB , and φinitial = φB
initial. Here the bounded domain D, the Strouhal and Knudsen

numbers Sh and Kn, the collision operator L, and the kernels R and P are common to the
problems of φA and φB . Then, if L, R, and P satisfy the properties summarized in Appendix,
the following symmetric relation holds:

Sh
∫

D

〈φB−
initialφ

A〉(t,x)dx +
∫

D

〈IB− ∗ φA〉(t,x)dx −
∫

∂Dw

〈ζn(g
B−
w ∗ φA)〉(t,x)dS

−
∫

∂Dg

〈ζn(h
B− ∗ φA)〉(t,x)dS + 1

2

∫
∂Dg

〈ζn(h
B− ∗ hA)〉(t,x)dS

= Sh
∫

D

〈φA−
initialφ

B〉(t,x)dx +
∫

D

〈IA− ∗ φB〉(t,x)dx −
∫

∂Dw

〈ζn(g
A−
w ∗ φB)〉(t,x)dS

−
∫

∂Dg

〈ζn(h
A− ∗ φB)〉(t,x)dS + 1

2

∫
∂Dg

〈ζn(h
A− ∗ hB)〉(t,x)dS. (12)

Here, f ∗ g is a convolution of f and g with respect to time (thus f ∗ g = g ∗ f ):

f ∗ g(t, ·) ≡
∫ t

0
f (r, ·)g(t − r, ·)dr.

Proof First integrate (8) with respect to x over the domain D:

Sh
∂

∂t

∫
D

〈φA
τ φB�−

s 〉dx −
∫

∂D

〈ζnφ
A
τ φB�−

s 〉dS =
∫

D

〈IA
τ φB�−

s 〉dx −
∫

D

〈IB�−
s φA

τ 〉dx. (13)

With the aid of (10), (11), and (4), the second term on the left-hand side is transformed as
follows:
∫

∂D

〈ζnφ
A
τ φB�−

s 〉dS =
∫

∂Dw

〈ζnφ
A
τ φB�−

s 〉dS +
∫

∂Dg

〈ζnφ
A
τ φB�−

s 〉dS

=
∫

∂Dw

〈ζng
A
wτ φ

B�−
s 〉dS +

∫
∂Dw

〈ζnφ
A
τ gB�−

ws 〉dS

+
∫

∂Dg

〈ζnh
A
τ φB�−

s 〉dS +
∫

∂Dg

〈ζnφ
A
τ hB�−

s 〉dS −
∫

∂Dg

〈ζnh
A
τ hB�−

s 〉dS.

Thus (13) is rewritten as

Sh
∂

∂t

∫
D

〈φA
τ φB�−

s 〉dx
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=
∫

D

〈IA−
τ φB�

s 〉dx −
∫

∂Dw

〈ζng
A−
wτ φB�

s 〉dS

−
∫

∂Dg

〈ζnh
A−
τ φB�

s 〉dS + 1

2

∫
∂Dg

〈ζnh
A−
τ hB�

s 〉dS −
∫

D

〈IB�−
s φA

τ 〉dx

+
∫

∂Dw

〈ζng
B�−
ws φA

τ 〉dS +
∫

∂Dg

〈ζnh
B�−
s φA

τ 〉dS − 1

2

∫
∂Dg

〈ζnh
B�−
s hA

τ 〉dS. (14)

Now integrate (14) with respect to t from t = −τ to t = s. Then the integration of the
left-hand side leads to

Sh

(∫
D

〈φB−
initialφ

A(τ + s,x, ζ )〉dx −
∫

D

〈φA−
initialφ

B(s + τ,x, ζ )〉dx

)
,

while the integration of each term of the right-hand side is transformed as follows:
∫ s

−τ

fτ g
�
s dt =

∫ s

−τ

f (τ + t)g(s − t)dt =
∫ τ+s

0
f (t)g(s + τ − t)dt = (f ∗ g)(s + τ).

Denoting τ + s by t , we eventually obtain (12) from (14). �

Proposition 1 is an extension of the symmetric relation for steady systems (see Sect. 2.2.2
in [9]) and is the most general form proposed in the present paper.2 It should be noted that
each term in the equation is a definite moment of φA or φB . This feature is significant and
is due to the fact that the cross term of φA and φB is eliminated by Lemmas 2 and 3.

Remark 2 Consider the homogeneous linearized Boltzmann equation for the domain sur-
rounded by a resting simple boundary. In the case, (12) is reduced to

Sh
∫

D

〈φB−
initialφ

A〉dx −
∫

∂D

τB
w ∗ Qn[φA]dS = Sh

∫
D

〈φA−
initialφ

B〉dx −
∫

∂D

τA
w ∗ Qn[φB ]dS.

(16)
This equation is remarkably similar to the Green formula for the solutions of heat conduc-
tion equation. Let us consider two solutions of the heat conduction equation for a common
domain D:

∂tT
A = �T A, T A(t = 0,x) = T A

initial(x) in D, T A = T A
w (t,x) on ∂D,

∂tT
B = �T B, T B(t = 0,x) = T B

initial(x) in D, T B = T B
w (t,x) on ∂D.

The Green formula for two functions f (t,x) and g(t,x) generally takes the form of
∫

D

[(f ∗ �g) − (g ∗ �f )]dx =
∫

∂D

[g ∗ (∇f · n) − f ∗ (∇g · n)]dS.

2In the case of steady systems, individual functions are time-independent, so that we may put φα
initial = φα

(α = A,B). Then, (12) divided by t is reduced to∫
D

〈IB−φA〉dx −
∫
∂Dw

〈ζngB−
w φA〉dS −

∫
∂Dg

〈ζnhB−φA〉dS + 1

2

∫
∂Dg

〈ζnhB−hA〉dS

=
∫
D

〈IA−φB 〉dx −
∫
∂Dw

〈ζngA−
w φB 〉dS −

∫
∂Dg

〈ζnhA−φB 〉dS + 1

2

∫
∂Dg

〈ζnhA−hB 〉dS. (15)

This is identical to the symmetric relation for steady bounded-domain systems (see (14) in [9]).
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Table 1 Green functions for initial data

Green function Corresponding element sources Note

G(m)(t,x, ζ ) gw = 0 h = 0 G
(m)
initial = 1 I = 0 –

G(�)(t,x, ζ )a gw = 0 h = 0 G
(�)
initial = ζ� I = 0 G(−�) = −G(�)

G(E)(t,x, ζ ) gw = 0 h = 0 G
(E)
initial = 2

3 |ζ |2 I = 0 –

a� is an arbitrary unit vector and ζ� = ζi�i

Substitution of T A and T B into f and g yields the relation

∫
D

[(T A ∗ ∂tT
B) − (T B ∗ ∂tT

A)]dx =
∫

∂D

[T B
w ∗ (∇T A · n) − T A

w ∗ (∇T B · n)]dS.

Since ∂t

∫
D

f ∗ g dx = ∫
D

fginitial dx + ∫
D

f ∗ ∂tg dx, we eventually obtain

∫
D

T B
initialT

A dx +
∫

∂D

T B
w ∗ (∇T A · n)dS =

∫
D

T A
initialT

B dx +
∫

∂D

T A
w ∗ (∇T B · n)dS. (17)

The correspondence to (16) is now obvious because the heat flow is of opposite sign of the
temperature gradient.

In the same way as in [9], we can consider a point source in the initial data, inhomo-
geneous term, and boundary data and its corresponding Green functions. Then, various
reciprocities in a way of point correspondence can be derived from Proposition 1. We shall
not repeat all these processes here. Rather, we shall pick up only a few kinds of Green func-
tions in Sects. 3–5 and present several interesting consequences obtained from Proposition 1.
Further in Sect. 6, we will show that the expressions similar to the fluctuation–dissipation
theorem and to those for the static admittance in the linear response theory for bulk systems
[16] can be obtained from Proposition 1 by applying it to a gas in a periodic box. On the
basis of this observation, we also discuss their extensions to the systems of arbitrary Kn.

3 Representation in Terms of the Green Functions for Initial Data

We consider an initial- and boundary-value problem (1)–(5) (the original problem, in short)
and its associated problems (1)–(5) with the initial data, boundary data, and inhomogeneous
term listed in Table 1. The latter problems are associated with the original one in the sense
that the domain D, collision operator L, kernels R and P , and the Strouhal and Knudsen
numbers Sh and Kn are the same as those in the original problem. We denote the solutions
of the associated problems by G(m), G(�), and G(E) and call them the Green function for
the initial mass, momentum, and energy, respectively. G(m), G(�), and G(E) represent the
response of the system against the initial uniform perturbation of mass, momentum, and
energy. There is no perturbation through the boundary and the inhomogeneous term. By
applying (12) to the pair of the solution φ of the original problem and any of the Green
functions in Table 1, we obtain a general expression of the total mass, momentum, and
energy in the domain D at any time for the original problem:
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Fig. 1 A vapor in the domain D

surrounded by its condensed
phases (I ∼ IV). At t = 0, the
temperature of the condensed
phases instantaneously changes
from T0 to T0(1 + τw). The
corresponding saturation pressure
of the vapor changes from p0 to
p0(1 + Pw)

Proposition 2 Consider the initial- and boundary-value problem (1)–(5) in the domain D.
The total mass, momentum, and energy in the domain at any time are expressed in terms of
the Green function for the initial mass, momentum, and energy as follows:

Sh
∫

D

⎡
⎣

ω(t,x)

u�(t,x)

E (t,x)

⎤
⎦ dx = Sh

∫
D

⎡
⎢⎣

〈φ−
initialG

(m)〉(t,x)

〈φ−
initialG

(−�)〉(t,x)

〈φ−
initialG

(E)〉(t,x)

⎤
⎥⎦ dx +

∫
D

⎡
⎣

〈I− ∗ G(m)〉(t,x)

〈I− ∗ G(−�)〉(t,x)

〈I− ∗ G(E)〉(t,x)

⎤
⎦ dx

−
∫

∂Dw

⎡
⎣

〈ζn(g
−
w ∗ G(m))〉(t,x)

〈ζn(g
−
w ∗ G(−�))〉(t,x)

〈ζn(g
−
w ∗ G(E))〉(t,x)

⎤
⎦ dS

−
∫

∂Dg

⎡
⎣

〈ζn(h
− ∗ G(m))〉(t,x)

〈ζn(h
− ∗ G(−�))〉(t,x)

〈ζn(h
− ∗ G(E))〉(t,x)

⎤
⎦ dS. (18)

Example 1 Consider a vapor in a domain D that is surrounded by its condensed phases I–IV
at rest at uniform temperature T0 (Fig. 1). The vapor is in phase equilibrium with the con-
densed phases (the reference equilibrium state). At t = 0, the temperature of the condensed
phases instantaneously changes from T0 to T0(1 + τw), where τw may be nonuniform but is
constant in time. We are interested in the time evolution of the total mass and energy in the
domain D.

In the present case, there is no imaginary boundary, so that ∂D = ∂Dw. Let us denote the
saturation pressure of the vapor at temperature T0(1 + τw) by p0(1 +Pw) and the solution of
the considered problem by φ. Since φ is the solution of the problem (1)–(3) with φinitial = 0,
I = 0, and gw = Pw + (|ζ |2 − 5

2 )τw, we obtain by the use of the first and third equations of
(18) the following expressions for the total mass and energy in the domain D:

Sh
∫

D

[
ω(t,x)

E (t,x)

]
dx = −

∫
∂D

[
Pw(x)un[G(m)](t,x) + τw(x)Qn[G(m)](t,x)

Pw(x)un[G(E)](t,x) + τw(x)Qn[G(E)](t,x)

]
dS. (19)

If the domain D is surrounded by a simple boundary, Pw is a fake parameter and disap-
pears from the above expressions because the mass flux through the boundary vanishes. In
the case, the first equation becomes trivial because of G(m) = 1, so that (19) is reduced to

Sh
∫

D

E (t,x)dx = −
∫

∂D

τw(x)Qn[G(E)](t,x)dS. (20)

Example 2 Consider the time-dependent Poiseuille and thermal transpiration flows in a
straight pipe (Fig. 2). The geometry of the pipe cross-section may be arbitrary.
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Fig. 2 Poiseuille and thermal transpiration flows. (a) Sketch of the problems. (b) Geometry of the pipe
cross-section

The time-dependent problem of the Poiseuille flow can be formulated as the flow of a gas,
which is initially in the thermal equilibrium at rest with the pipe wall of uniform temperature,
caused by a uniform weak external force in the (negative) x1-direction. Let us denote the
perturbed velocity distribution function by φP(t,x⊥, ζ ), where x⊥ = (x2, x3). The φP is a
solution of (1)–(3) with D = S, ∂D = ∂Dw = ∂S, I = −ζ1, gw = 0, and φP

initial = 0.
Next consider the time-dependent problem of the thermal transpiration and denote its

perturbed velocity distribution function by φT = x1(|ζ |2 − 5
2 ) + 
T(t,x⊥, ζ ). Then, 
T is

a solution of (1)–(3) with D = S, ∂Dw = ∂S, ∂Dg = 0, I = −ζ1(|ζ |2 − 5
2 ), gw = 0, and a

certain initial data 
T
initial(x⊥, ζ ). 3

Substitution of φP and 
T into the second equation of (18) yields the following relations:

Sh
∫

S

[
u1[φP](t,x⊥)

u1[φT](t,x⊥)

]
dx⊥ = −

∫
S

[
u1[G(e1)](t,x⊥)

Sh〈
T−
initialG

(e1)〉(t,x⊥) + Q1[G(e1)](t,x⊥)

]
dx⊥,

(21)

where e1 is the unit vector in the x1-direction. The relation u1[φT] = u1[
T] has been taken
into account in the second equation. Thus, the mass flow (flux) through the pipe can be
expressed for any time in terms of the Green function for the initial momentum in the x1-
direction. Incidentally, since G(e1) → 0 as t → ∞, (21) is reduced in the same limit to

∫
S

[
u1[φP](x⊥)

u1[φT](x⊥)

]
dx⊥ = −Sh−1

∫
S

∫ ∞

0

[
u1[G(e1)](t,x⊥)

Q1[G(e1)](t,x⊥)

]
dt dx⊥. (22)

The left-hand side is the mass flow of the steady Poiseuille and thermal transpiration flows.

4 Representation in Terms of the Green Function for Inhomogeneous Term

In the present section, for the original initial- and boundary-value problem (1)–(5), we con-
sider the associated problems (1)–(5) with the initial data, boundary data, and inhomoge-
neous term listed in Table 2. We denote the solutions of the associated problems by G(m;I ),
G(�;I ), G(E;I ) and call them the Green function for the mass, momentum, and energy type
inhomogeneous term, respectively. The total mass, momentum, and energy, which have al-
ready been studied in Sect. 3, can also be expressed for any time in terms of the Green
function for the inhomogeneous term. These alternative expressions are obtained by ap-

3Natural initial data would be 
T
initial = −

√
π

2 Knζ1A(|ζ |), where A is the solution of L(ζ1A(|ζ |)) =
−ζ1(|ζ |2 − 5

2 ) such that 〈|ζ |2A(|ζ |)〉 = 0. Here, we simply assume that 
T
initial is independent of x1.
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Table 2 Green functions for inhomogeneous term

Green function Corresponding element sources Note

G(m;I )(t,x, ζ ) gw = 0 h = 0 G
(m;I )
initial = 0 I = 1 –

G(�;I )(t,x, ζ ) gw = 0 h = 0 G
(�;I )
initial = 0 I = ζ� G(−�;I ) = −G(�;I )

G(E;I )(t,x, ζ ) gw = 0 h = 0 G
(E;I )
initial = 0 I = 2

3 |ζ |2 –

plying the pair of the solution φ of the original problem and any of the Green functions in
Table 2 to the symmetric relation (12). The results are as follows:

Proposition 3 Consider the initial- and boundary-value problem (1)–(5) in the domain D.
Then, the time integration of the total mass, momentum, and energy in the domain can be
expressed in terms of the Green function for the mass, momentum, and energy type inhomo-
geneous term as follows:

∫
D

⎡
⎢⎣

ω(t,x)

u�(t,x)

E (t,x)

⎤
⎥⎦ dx = Sh

∫
D

⎡
⎣

〈φ−
initialG

(m;I )〉(t,x)

〈φ−
initialG

(−�;I )〉(t,x)

〈φ−
initialG

(E;I )〉(t,x)

⎤
⎦ dx +

∫
D

⎡
⎣

〈I− ∗ G(m;I )〉(t,x)

〈I− ∗ G(−�;I )〉(t,x)

〈I− ∗ G(E;I )〉(t,x)

⎤
⎦ dx

−
∫

∂Dw

⎡
⎣

〈ζn(g
−
w ∗ G(m;I ))〉(t,x)

〈ζn(g
−
w ∗ G(−�;I ))〉(t,x)

〈ζn(g
−
w ∗ G(E;I ))〉(t,x)

⎤
⎦ dS

−
∫

∂Dg

⎡
⎣

〈ζn(h
− ∗ G(m;I ))〉(t,x)

〈ζn(h
− ∗ G(−�;I ))〉(t,x)

〈ζn(h
− ∗ G(E;I ))〉(t,x)

⎤
⎦ dS. (23)

The total mass, momentum, and energy in the domain can be obtained for any time by
differentiating (23) with respect to t .

Example 3 Consider again the time-dependent Poiseuille and thermal transpiration flows
studied in Example 2. As explained before, φP is the solution of (1)–(3) with D = S, ∂Dw =
∂S, I = −ζ1, gw = 0, and φP

initial = 0. Hence φP is no other than the Green function G(−e1;I ),
if we consider 
T to be the solution of the original problem in the domain S. Therefore, by
applying the second equation of (23) with � = e1 to 
T, we obtain the following relation:

∫
S
u1[φT](t,x⊥)dx⊥ = Sh

∫
S
〈
T−

initialφ
P〉(t,x⊥)dx⊥ +

∫
S
Q1[φP](t,x⊥)dx⊥.

Here again we have used the fact that u1[φT] = u1[
T]. Differentiating the above relation
with respect to t yields

∫
S
u1[φT](t,x⊥)dx⊥ = Sh ∂t

∫
S
〈
T−

initialφ
P〉(t,x⊥)dx⊥ +

∫
S
Q1[φP](t,x⊥)dx⊥. (24)

This is an extension of the reciprocal relation between the steady Poiseuille and thermal tran-
spiration flows. In the limit t → ∞, the first term on the right-hand side vanishes, because
φP tends to a steady solution. Thus, in the same limit, (24) recovers the known reciprocity
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Table 3 Green functions for the boundary data on Sw of real boundary ∂Dw

Green function Corresponding element sources

G(P ;Sw)(t,x, ζ ) gw = χSw
a h = 0 G

(P ;Sw)
initial = 0 I = 0

G(T ;Sw)(t,x, ζ ) gw = (|ζ |2 − 5
2 )χSw h = 0 G

(T ;Sw)
initial = 0 I = 0

aχSw is the characteristic function of Sw ⊆ ∂Dw, i.e., χSw = 1 on Sw and χSw = 0 otherwise

that the (dimensionless) heat flux of the Poiseuille flow is identical to the mass flux of the
thermal transpiration flow (e.g., [6] and Example 5 in [9]). It should be noted that the same
reciprocity as the steady case remains valid for any time, if 
T

initial = 0.

By the comparison between (23) and (18), it is seen that the integration of the right-hand
side of (18) from the initial to time t is the same as the right-hand side of (23) multiplied by
Sh. Since φinitial in (23) is arbitrary, we obtain the following:

Corollary 1 The Green function for the inhomogeneous term is a time integration of the
Green function for the corresponding initial data:

G(α;I )(t,x, ζ ) = Sh−1
∫ t

0
G(α)(r,x, ζ )dr (α = m,�,E). (25)

Remark 3 (25) implies that ∂tG
(α;I ) multiplied by Sh solves the same initial- and boundary-

value problem (1)–(5) as that for G(α), which suggests the interesting behavior of G(α;I ).
That is, even when G(α;I ) is continuous, ∂tG

(α;I ) has a discontinuity corresponding to that
of G(α) which is caused by the difference between the initial condition and the boundary
condition for G(α).

5 Representation in Terms of the Green Function for Boundary Data

In the present section, we consider the reaction of the system against the elemental source
on the boundary. We will show that the mass, momentum, and energy transferred to the
boundary can be expressed for any time in terms of the Green function for the element
source. The discussions are essentially parallel to those for steady systems in [9]. We discuss
the case of real boundary and that of imaginary boundary separately.

5.1 Mass and Heat Fluxes on the Real Boundary

For the original initial- and boundary-value problem (1)–(5), we consider the associated
problems (1)–(5) with the initial data, boundary data, and inhomogeneous term listed in
Table 3. We denote the solutions of the associated problems by G(P ;Sw) and G(T ;Sw) and call
them the Green functions for the pressure and temperature sources on the surface Sw. By
applying (12) to the pair of the solution φ of the original problem and any of the Green
functions in Table 3, we obtain the representation of the mass and heat fluxes through Sw in
terms of the Green functions. The results are summarized as follows:
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Fig. 3 A gas in a channel with
periodically arranged bodies

Proposition 4 Consider the initial- and boundary-value problem (1)–(5) in the domain D.
The total mass and heat transferred from the surface Sw on ∂Dw to the gas up to time t can
be expressed in terms of the Green function for the pressure and temperature sources on Sw:

∫
Sw

[
un(t,x)

Qn(t,x)

]
dS = −Sh

∫
D

[ 〈φ−
initialG

(P ;Sw)〉(t,x)

〈φ−
initialG

(T ;Sw)〉(t,x)

]
dx −

∫
D

[ 〈I− ∗ G(P ;Sw)〉(t,x)

〈I− ∗ G(T ;Sw)〉(t,x)

]
dx

+
∫

∂Dw

[ 〈ζn(g
−
w ∗ G(P ;Sw))〉(t,x)

〈ζn(g
−
w ∗ G(T ;Sw))〉(t,x)

]
dS

+
∫

∂Dg

[ 〈ζn(h
− ∗ G(P ;Sw))〉(t,x)

〈ζn(h
− ∗ G(T ;Sw))〉(t,x)

]
dS. (26)

The mass and heat fluxes through Sw are obtained for any time by differentiating (26) with
respect to t .

Example 4 Consider again the example studied in Example 1. We are interested in the mass
and heat transfer from the condensed phase I (see Fig. 1). Denoting by SI the interface
between the vapor and the condensed phase I, the expression of the total mass and heat
transferred from the condensed phase I up to time t is given by (26) as follows:

∫
SI

[
un(t,x)

Qn(t,x)

]
dS =

∫
∂D

[
Pw(x)un[G(P ;SI)](t,x) + τw(x)Qn[G(P ;SI)](t,x)

Pw(x)un[G(T ;SI)](t,x) + τw(x)Qn[G(T ;SI)](t,x)

]
dS.

In particular, if SI is a simple boundary, the above expression is reduced to

∫
SI

Qn(t,x)dS =
∫

∂D

τw(x)Qn[G(T ;SI)](t,x)dS.

Example 5 Consider a gas in a straight channel, in which the bodies 1 ∼ 4 are periodically
arranged (Fig. 3). The channel wall and the bodies are maintained at uniform temperature
T0 (the reference temperature). The gas is initially in the thermal equilibrium state with the
channel wall and bodies. From t = 0, a weak uniform external force acts on the gas in the
x1-direction. We are interested in the heat that the gas receives from the bodies.

The present problem is formulated by (1)–(5) with φinitial = 0, I = ζ1, and gw = h = 0.
Thus, the total heat that the gas receives from the bodies up to time t is expressed by the use
of (26) as follows: ∫

∂B

Qn(t,x)dS =
∫

D

u1[G(T ;∂B)](t,x)dx, (27)
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Table 4 Green functions for the boundary data on Sg of imaginary boundary

Green function Corresponding elemental source Note

G(P ;Sg)(t,x, ζ ) gw = 0 h = χSg (x) G
(P ;Sg)

initial (x, ζ ) = 0 I = 0 –

G(�;Sg)(t,x, ζ ) gw = 0 h = 2ζi�iχSg (x) G
(�;Sg)

initial (x, ζ ) = 0 I = 0 G(−�;Sg) = −G(�;Sg)

G(T ;Sg)(t,x, ζ ) gw = 0 h = (|ζ |2 − 5
2 )χSg (x) G

(T ;Sg)

initial (x, ζ ) = 0 I = 0 –

where ∂B is the surface of the bodies. Thus, the heat transfer in the present problem can be
computed by the flow in the channel when the bodies are uniformly heated.

The right-hand side of (27) can be transformed as follows:
∫

D

u1[G(T ;∂B)](t,x)dx

=
∫

D

(
∂ x1u1[G(T ;∂B)]

∂x1
− x1

∂ u1[G(T ;∂B)]
∂x1

)
dx

=
∫

S(x1)

u1[G(T ;∂B)]dx⊥
∣∣∣
x1=1

−
∫ 1

0

∫
S(x1)

x1(Sh〈G(T ;∂B)〉 − ∇⊥ · u⊥[G(T ;∂B)])dx⊥dx1

=
∫

S(x1)

u1[G(T ;∂B)]dx⊥
∣∣∣
x1=1

− Sh
∫

D

x1〈G(T ;∂B)〉dx,

where S(x1) is the cross section of D at the axial position x1, x⊥ = (x2, x3), u⊥ = (u2, u3),
and ∇⊥ = (∂/∂x2, ∂/∂x3). In the above transformation, the second equality is due to the
mass conservation law, while the third equality is due to the Gauss divergence theorem in
the cross section and to no mass flow across the channel wall and body surfaces. Thus (27)
is rewritten as follows:4

∫
∂B

Qn(t,x)dS = −Sh
∫

D

x1〈G(T ;∂B)〉(t,x)dx +
∫

S(x1)

u1[G(T ;∂B)](t,x)dx⊥
∣∣∣
x1=1

.

By taking the limit t → ∞ after differentiating with respect to t , we obtain the following
relation that holds at the final steady state:

∫
∂B

Qn(x)dS =
∫

S(x1)

u1[G(T ;∂B)](x)dx⊥
∣∣∣
x1=1

.

Therefore, if the bodies are arranged so that a steady one-way flow is not induced when
uniformly heated, the steady flow induced by the uniform external force does not transfer
the heat to the bodies in total.

5.2 Mass, Momentum, and Heat Fluxes on the Imaginary Boundary

For the original initial- and boundary-value problem (1)–(5), we consider the associated
problems (1)–(5) with the initial data, boundary data, and inhomogeneous term listed in

4If we introduce the function 
 = −x1 + φ, 
 is a solution of (1)–(5) with 
initial = −x1, I = 0, gw = 0,
and h = −1. The present relation is obtained directly by applying (26) to 
.
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Fig. 4 Thermal edge pump [18]

Table 4. We denote the solutions of the associated problems by G(P ;Sg), G(�;Sg), and G(T ;Sg)

and call them the Green functions for the pressure, velocity, and temperature sources on the
surface Sg. By applying (12) to the pair of the solution φ of the original problem and any of
the Green functions in Table 4, we obtain the representation of the mass, momentum, and
heat fluxes through Sg in terms of the Green functions. The results are as follows:

Proposition 5 Consider the initial- and boundary-value problem (1)–(5) in the domain D.
The total mass, momentum, and heat transferred from the surface Sg on ∂Dg to the gas up
to time t can be expressed in terms of the Green function for the pressure, velocity, and
temperature sources on Sg:

∫
Sg

⎡
⎣

un(t,x)

P n�(t,x)

Qn(t,x)

⎤
⎦ dS

= −Sh
∫

D

⎡
⎣

〈φ−
initialG

(P ;Sg)〉(t,x)

〈φ−
initialG

(−�;Sg)〉(t,x)

〈φ−
initialG

(T ;Sg)〉(t,x)

⎤
⎦ dx −

∫
D

⎡
⎣

〈I− ∗ G(P ;Sg)〉(t,x)

〈I− ∗ G(−�;Sg)〉(t,x)

〈I− ∗ G(T ;Sg)〉(t,x)

⎤
⎦ dx

+
∫

∂Dw

⎡
⎣

〈ζn(g
−
w ∗ G(P ;Sg))〉(t,x)

〈ζn(g
−
w ∗ G(−�;Sg))〉(t,x)

〈ζn(g
−
w ∗ G(T ;Sg))〉(t,x)

⎤
⎦ dS +

∫
∂Dg

⎡
⎣

〈ζn(h
− ∗ G(P ;Sg))〉(t,x)

〈ζn(h
− ∗ G(−�;Sg))〉(t,x)

〈ζn(h
− ∗ G(T ;Sg))〉(t,x)

⎤
⎦ dS

+
∫

Sg

⎡
⎣

un[h](t,x)

P n�[h](t,x)

Qn[h](t,x)

⎤
⎦ dS. (28)

The mass, momentum, and heat fluxes through Sg are obtained for any time by differentiating
(28) with respect to t .

Example 6 Consider a gas in a straight pipe, in which two arrays of plates, say B1 and B2,
are periodically arranged (Fig. 4). Initially, the pipe wall and the plates are commonly at a
uniform temperature T0 and the gas is thermally in equilibrium with them. If the temperature
of the arrays B1 is changed to T0(1 + τw1) (τw1 is a small constant), a flow is induced to
develop a steady one-way flow in the pipe (thermal edge pump [18]). When the change of
the temperature occurs instantaneously at t = 0, the problem is formulated by (1)–(5) with
φinitial = 0, I = 0, gw = (|ζ |2 − 5

2 )τw1χ∂B1 , and h = 0. Thus, the expression of the total mass
passing through the pipe cross-section S up to time t in the x1-direction is obtained from
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(28) in the form: ∫
S
u1(t,x)dS = −τw1

∫
∂B1

Qn[G(P ;S)](t,x)dS.

Differentiating with respect to t yields the mass flux for any time:

∫
S
u1(t,x)dS = −τw1

∫
∂B1

Qn[G(P ;S)](t,x)dS (t > 0).

This is an extension of the formula in Example 6 of [9] to the time-dependent situation.

6 Similarity to Fluctuation–Dissipation Theorem and Symmetry of Static Admittance
in the Linear Response Theory for Bulk Systems

As mentioned at the end of Sects. 1 and 2.3, the symmetric relation (12) yields the expres-
sions similar to the fluctuation–dissipation theorem and to those for the static admittance
in the linear response theory for bulk systems (i.e., the systems for small Kn or without
boundary effect) [16], when applied to a gas in a box with the periodic condition. In this
section, we briefly discuss this issue and their extension to gas systems in a fixed bounded
domain for arbitrary Kn. In rarefied gas dynamics, the fluctuation–dissipation theorem was
sometimes used to evaluate the validity and/or accuracy of particle simulation methods like
the DSMC (e.g., [19–21]). The point of the present argument is different from those studies.

Consider a gas in a box with the periodic condition (the periodic box Dp, in short). The
gas in the periodic box is intended to represent a uniform expanse of the gas in a whole
space, i.e., a bulk gas without boundary effect, so that Kn for the periodic box Dp is a fake
parameter or may be considered small. Let us denote by φA the solution of (1), (2), and (5b)
with h = 0, I = ζ1(|ζ |2 − 5

2 ), and φA
initial = 0. Then, φA is independent of x and approaches

(
√

π/2)Knζ1A(|ζ |) as t → ∞, where A(|ζ |) is the solution of L(ζiA(|ζ |)) = −ζi(|ζ |2 − 5
2 )

with 〈|ζ |2A(|ζ |)〉 = 0 [22–24]. On the other hand, let us denote by φB the solution of (1),
(2), and (5b) with h = 0, I = 0, and φB

initial = ζ1(|ζ |2 − 5
2 ). Then, φB is also independent of

x and tends to vanish as t → ∞. Now applying (12) to the pair of φA and φB and dividing
the resulting by Dp, we obtain5

Sh

〈
ζ1

(
|ζ | − 5

2

)
φA(t, ζ )

〉
=

∫ t

0

〈
ζ1

(
|ζ | − 5

2

)
φB(s, ζ )

〉
ds. (29)

Since φB
initial = ζ1(|ζ |2 − 5

2 ) and that φA → (
√

π/2)Knζ1A(|ζ |) as t → ∞, taking the limit
t → ∞ in (29) leads to

λ = 2(k/m)p0t0

∫ ∞

0
〈φB

initialφ
B(t, ζ )〉dt. (30)

5For the BGK (or BKW in [22]) model, the relation (29) is easily verified because φA and φB can

be solved explicitly as φA = (
√

π/2)Knζ1(|ζ |2 − 5
2 )[1 − exp(−(2/

√
π)(t/KnSh))] and φB = ζ1(|ζ |2 −

5
2 ) exp(−(2/

√
π)(t/KnSh)). In the same way, (31) is easily verified for the BGK model, because φA and φB

are given by φA = √
πKnζ1ζ2[1 − exp(−(2/

√
π)(t/KnSh))] and φB = 2ζ1ζ2 exp(−(2/

√
π)(t/KnSh)).
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Table 5 Additional Green functions for initial data and inhomogeneous term

Green function Corresponding element sources

G(�⊗k;I )(t,x, ζ ) gw = 0 h = 0 G
(�⊗k;I )
initial = 0 I = 2ζkζ�

G(H�;I )(t,x, ζ ) gw = 0 h = 0 G
(H�;I )

initial = 0 I = ζ�(|ζ |2 − 5
2 )

G(�⊗k)(t,x, ζ ) gw = 0 h = 0 G
(�⊗k)
initial = 2ζ�ζk I = 0

G(H�)(t,x, ζ ) gw = 0 h = 0 G
(H�)

initial = ζ�(|ζ |2 − 5
2 ) I = 0

Here, λ[≡ √
πp0(2kT0/m)−1/2(k/m)�0〈ζ 2

1 (|ζ | − 5
2 )A(|ζ |)〉] is the thermal conductivity of

the gas. The relation (30) means that the thermal conductivity is expressed by the time-
correlation in the relaxation problem from the initial perturbation ζ1(|ζ |2 − 5

2 ). In this sense,
(30) is similar to the fluctuation–dissipation theorem for the thermal conductivity.

The corresponding expression for the viscosity can be obtained in the same way. Let
us denote by φA the solution of (1), (2), and (5b) with h = 0, I = 2ζ1ζ2, and φA

initial = 0.
Let us denote by φB the solution of (1), (2), and (5b) with h = 0, I = 0, and φB

initial =
2ζ1ζ2. Here, D is the periodic box Dp. Then, both φA and φB are independent of x,
and φA → (

√
π/2)Knζ1ζ2B(|ζ |) and φB → 0 as t → ∞, where B(|ζ |) is the solution of

L(ζ1ζ2B(|ζ |)) = −2ζ1ζ2. From (12), we obtain

Sh〈2ζ1ζ2φ
A(t, ζ )〉 =

∫ t

0
〈2ζ1ζ2φ

B(s, ζ )〉ds, (31)

and taking the limit t → ∞ in this relation leads to

μ = p0t0

∫ ∞

0
〈φB

initialφ
B(t, ζ )〉dt, (32)

where μ[≡ √
πp0(2kT0/m)−1/2�0〈ζ 2

1 ζ 2
2 B(|ζ |)〉] is the viscosity of gas. Thus, the viscosity

is expressed by the time correlation in the relaxation problem from the initial perturbation
2ζ1ζ2 (the similarity to the fluctuation–dissipation theorem for the viscosity).

Motivated by the above observations, we consider correlations between the Green func-
tions for initial data and inhomogeneous term listed in Tables 1 and 5 for any fixed bounded
domain D (and for any Kn). By applying the symmetric relation (12) to the pair of G(α;I )

and G(α) (α = �,� ⊗ k,H�) and taking the limit t → ∞, we especially obtain

lim
t→∞

∫
D

⎡
⎢⎣

〈ζ�G
(�;I )〉(t,x)

〈2ζ�ζkG
(�⊗k;I )〉(t,x)

〈ζ�(|ζ |2 − 5
2 )G(H�;I )〉(t,x)

⎤
⎥⎦ dx = Sh−1

∫
D

∫ ∞

0

⎡
⎢⎣

〈G(�)
initialG

(�)〉(s,x)

〈G(�⊗k)

initial G
(�⊗k)〉(s,x)

〈G(H�)

initialG
(H�)〉(s,x)

⎤
⎥⎦ds dx.

(33)

It should be noted that, if D is the periodic box Dp, the first equation becomes a trivial iden-
tity,6 while the second and third become the expression corresponding to the fluctuation–
dissipation theorem for the viscosity and the thermal conductivity, respectively. The ex-
pression (33) may be regarded as a generalization of the expression corresponding to the

6When D = Dp, G(�;I ) = ζ� t/Sh and G(�) = ζ�.
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fluctuation–dissipation theorem to gas systems in a fixed bounded domain for arbitrary Kn.
Incidentally, if the domain D is the cross-section S of the straight pipe discussed in Exam-
ple 2, the first equation of (33) with � = e1 is identical to the first equation of (22).

In the same way, we can discuss the extension of the static admittance in the linear
response theory for bulk systems to the systems of arbitrary Kn. That is, by applying (12)
to the pairs of G(�;I ) and G(H�) and of G(H�) and G(�;I ) and then taking the limit t → ∞, we
obtain

lim
t→∞

∫
D

[ 〈ζ�G
(H�;I )〉(t,x)

〈ζ�(|ζ |2 − 5
2 )G(�;I )〉(t,x)

]
dx = Sh−1

∫
D

∫ ∞

0

[ 〈G(H�)

initialG
(�)〉(s,x)

〈G(�)
initialG

(H�)〉(s,x)

]
ds dx.

The left-hand side is the static admittance of the systems against the weak external force
represented by the inhomogeneous term for any fixed bounded domain D. On the other
hand, application of (12) to the pair of G(�) and G(H�) yields

∫
D

〈G(�)
initialG

(H�)〉dx =
∫

D

〈G(H�)

initialG
(�)〉dx.

Thus, the above static admittances are reciprocal each other:

lim
t→∞

∫
D

〈ζ�G
(H�;I )〉(t,x)dx = lim

t→∞

∫
D

〈
ζ�

(
|ζ |2 − 5

2

)
G(�;I )

〉
(t,x)dx. (34)

When D is the periodic box Dp, both sides vanish7 and (34) loses its meaning. However,
in general, the above reciprocity is physically meaningful. To illustrate it, let us consider
Example 2 again, in which the domain D is the cross-section of the straight pipe. Then (34)
with � = e1 is identical to (24) with t → ∞. Thus, the latter is an example of the symmetry of
the static admittance generalized to gas systems in a fixed bounded domain for arbitrary Kn.
As is mentioned in Example 3, (24) with t → ∞ is a known relation between the net mass
flow of the steady thermal transpiration and the net heat flow of the steady Poiseuille flow,
both of which are known to be induced as a gas rarefaction effect. The present discussion
gives an alternative view of the reciprocity between the steady systems for arbitrary Kn.

7 Conclusion

In the present paper, we first established a symmetric relation between two problems de-
scribed by the unsteady linearized Boltzmann equation for a gas in a fixed bounded domain.
Then, we introduced several Green functions for the initial data, inhomogeneous term, and
boundary data and derived general expressions for the total mass, momentum, and energy in
the system and those for the mass, momentum, and heat fluxes through the boundary for any
time in terms of the Green function. Several examples of the application of these expressions
have been presented. Finally, the expressions similar to the fluctuation–dissipation theorem
and to the static admittance in the linear response theory for bulk systems were presented.
Further, their extensions to the systems of arbitrary Knudsen number were discussed.
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7When D = Dp, G(H�;I ) → (
√

π/2)Knζ�A(|ζ |) as t → ∞ and G(�;I ) = ζ� t/Sh.
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Appendix: A Linearized Collision Operator L and the Kernels R and P

A.1 Properties of L

1. L(
)− = L(
−) for any 
, where �−(x, ζ ) ≡ �(x,−ζ ).
2. 〈
L(�)〉 = 〈�L(
)〉 for any 
 and � , where 〈
〉 = ∫


(ζ )E(ζ )dζ (self-adjointness).
3. L(
) = 0 holds if and only if 
 is a linear combination of 1, ζ , and |ζ |2.
4. 〈
L(
)〉 ≤ 0 for any 
, where the equality holds if and only if 
 is a linear combination

of 1, ζ , and |ζ |2.

A.2 Properties of R

We summarize the properties of RCR and RPR separately (see Appendix A.9 in [22]).

Properties of RCR

1. RCR(ζ ∗, ζ ;x) ≥ 0 for ζ ∗
n < 0, ζn > 0 (non-negativity).

2.
∫

ζn>0 RCR(ζ ∗, ζ ;x)dζ = 1 for ζ ∗
n < 0 (condition of no mass flow across the boundary).

3. |ζ ∗
n |RCR(ζ ∗, ζ ;x)E(ζ ∗) = |ζn|RCR(−ζ ,−ζ ∗;x)E(ζ ) for ζn > 0, ζ ∗

n < 0 (the detailed
balance).

4. Let ϕ be ϕ = c0 + ciζi + c4|ζ |2, where c0, ci , and c4 are independent of ζ . Among such
ϕ, only ϕ = c0 satisfies the following relation (uniqueness condition):

ϕ(x, ζ )E(ζ ) =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RCR(ζ ∗, ζ ;x)ϕ(x, ζ ∗)E(ζ ∗)dζ ∗ for ζn > 0.

Properties of RPR

1. RPR(ζ ∗, ζ ;x) ≥ 0 for ζ ∗
n < 0, ζn > 0 (non-negativity).

2. There exists a given function g0(x, ζ ) ≥ 0 defined in ζn > 0 such that

E(ζ ) = g0(x, ζ ) +
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RPR(ζ ∗, ζ ;x)E(ζ ∗)dζ ∗ for ζn > 0.

3. |ζ ∗
n |RPR(ζ ∗, ζ ;x)E(ζ ∗) = |ζn|RPR(−ζ ,−ζ ∗;x)E(ζ ) for ζn > 0, ζ ∗

n < 0 (the detailed
balance).

4. Let ϕ be ϕ = c0 + ciζi + c4|ζ |2, where c0, ci , and c4 are independent of ζ . Among such
ϕ, only ϕ = 0 satisfies the following relation (uniqueness condition):

ϕ(x, ζ )E(ζ ) =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| RPR(ζ ∗, ζ ;x)ϕ(x, ζ ∗)E(ζ ∗)dζ ∗ for ζn > 0.

A.3 Properties of P

(a) P (x ′, ζ ′,x, ζ ) ≥ 0 and is not identically zero.
(b) |ζn|E(ζ )P (x ′, ζ ′,x, ζ ) = |ζ ′

n′ |E(ζ ′)P (x,−ζ ,x ′,−ζ ′) for ζn > 0 and ζ ′
n′ < 0.

(c) There exists a given function g0(x, ζ ) ≥ 0 defined in ζn > 0 and x ∈ ∂D(2)
g such that

1 = g0(x, ζ ) +
∫

∂D
(2)
g

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )dζ ′ dS′ for ζn > 0.



Symmetry of the Unsteady Linearized Boltzmann Equation 1005

References

1. Kennard, E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)
2. Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836–1837 (1966)
3. Epstein, P.S.: Zur Theorie des Radiometer. Z. Phys. 54, 537–563 (1929)
4. Sone, Y.: Flow induced by thermal stress in rarefied gas. Phys. Fluids 15, 1418–1423 (1972)
5. Bakanov, S.P., Vysotskij, V.V., Deryaguin, B.V., Roldughin, V.I.: Thermal polarization of bodies in the

rarefied flow. J. Non-Equilib. Thermodyn. 8, 75–83 (1983)
6. Loyalka, S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. I. J. Chem. Phys. 55,

4497–4503 (1971)
7. Roldughin, V.I.: On the theory of thermal polarization of bodies in a rarefied gas flow. J. Non-Equilib.

Thermodyn. 19, 349–367 (1994)
8. Takata, S.: Note on the relation between thermophoresis and slow uniform flow problems for a rarefied

gas. Phys. Fluids 21, 112001 (2009)
9. Takata, S.: Symmetry of the linearized Boltzmann equation and its application. J. Stat. Phys. 136, 751–

784 (2009)
10. Takata, S.: Symmetry of the linearized Boltzmann equation II. Entropy production and Onsager–Casimir

relation. J. Stat. Phys. 136, 945–983 (2009)
11. McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E., Kuščer, I.: Nonequilibrium Phenomena in Poly-
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